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Abstract. We consider the hadronic B decays B̄0 → D0η, B̄0 → D∗0η, B̄0 → D0η′, B̄0 → D∗0η′ in the
framework of a quark-flavour basis and factorization. The formalism allows one to compute the decays to
the η meson and to relate them to those of the η′. Measuring the branching ratios of these processes may
shed light on the nature of the η–η′ mixing. On the experimental side, only upper limits on the branching
ratios are known at present.

1 Introduction

The hadronic B decays B̄0 → D0η, B̄0 → D∗0η, B̄0 →
D0η′, B̄0 → D∗0η′ are of considerable interest both theo-
retically and experimentally. Measuring the branching ra-
tios of these processes may shed light on the nature of
the η–η′ mixing. On the experimental side, only limits
on these decays are known at present from CLEO [1]. A
theoretical estimate of B̄0 → D(∗)0η, B̄0 → D(∗)0η′ is im-
portant also because these processes are a background for
the semi–inclusive processes B̄0 → Xsη, B̄0 → Xsη

′. For
a recent experimental analysis, see [2].

The processes B̄0 → D(∗)0η, B̄0 → D(∗)0η′ proceed
via the internal spectator diagram shown in Fig. 1. They
are colour suppressed since the colour of the quarks from
the virtual W has to match the colour of the produced
c quark from b → c and the spectator antiquark coming
from the B meson. Here we consider the quark component
ηq of the η particle in the so-called quark-flavour basis [3]:(

η
η′

)
=
(
cosφ − sinφ
sinφ cosφ

)(
ηq

ηs

)
, (1)

where the Fock state description of ηq,s is

|ηq〉 = Ψq
|uū+ dd̄〉√

2
+ · · · (2)

|ηs〉 = Ψs|ss̄〉 + · · · (3)

The ellipses indicate higher Fock states, like glue states,
while the wave functions Ψq,s are the light-cone wave func-
tions of the parton states. Our assumption is that the ηq

component is the one to be considered in the factoriza-
tion diagram resulting from Fig. 1 (shrinking the W prop-
agator to a point). We will exploit the relation between
η, η′ and ηq to compute the amplitude for the process
B̄0 → D(∗)0η′.
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Fig. 1. Flavour diagram for B̄0 → η(η′). The ηq component
allows one to bridge between the two processes

We recall the form factor parametrisation:

〈η(qη)|V µ(q)|B̄0(p)〉=
[
(p+ qη)µ +

m2
η −m2

B

q2 qµ

]
F1(q2)

−
[
m2

η −m2
B

q2 qµ

]
F0(q2), (4)

with F1(0) = F0(0). Moreover we need the matrix ele-
ments

〈VAC|V µ|D(p)〉 = ifDp
µ, (5)

〈VAC|V µ|D∗(ε, p)〉 = εµmD∗fD∗ , (6)

and we will use the values [4] fD = 200MeV, fD∗ =
230MeV.

Adopting the Bauer–Stech–Wirbel approach to factor-
ization [5] we can consider the diagram in Fig. 1 describing
the η coupling through its dd̄ component. The amplitude
we need to compute is

GB̄0D0η = 〈ηD0|HBSW|B̄0〉 = cosφ〈ηqD
0|HBSW|B̄0〉

=
GF√
2
VcbV

∗
uda2fDF

(B→ηq)
0

×(m2
D)(m2

B −m2
ηq
)
cosφ√

2
, (7)
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where φ is determined in [3] to be φ = 39.3◦ and a2 is the
phenomenological coefficient of the Bauer–Stech–Wirbel
effective Hamiltonian a2 = 0.29. It is significantly larger
than the leading-order result aLO

2 ∼ 0.12 corresponding
to naive factorization. Such a large correction is not sur-
prising. The QCD factorization formula of [6] cannot be
used to compute rigorously a2 in these decays; however, a
rough estimate in the limit mc 
 mb gives a2 ∼ 0.25 [7].
The factor 1/21/2 in (7) accounts for the fact that only the
dd̄ component enters in our diagram. The strange quark
component is absent.

The amplitude GB̄0D0η′ is then connected to (7)
through

GB̄0D0η′ = tanφGB̄0D0η. (8)

In an analogous way we find

GB̄0D∗0η = 〈ηD∗0|HBSW|B̄0〉 = cosφ〈ηqD
∗0|HBSW|B̄0〉

=
GF√
2
VcbV

∗
uda2fD∗mD∗F

(B→ηq)
1 (m2

D∗)ε

·(p+ qηq )
cosφ√

2
. (9)

The term ε · (p + qη) is easily evaluated summing over
the polarisations of D∗ once the square modulus of this
amplitude is considered.

2 NS model

In order to get an idea about the amount of model de-
pendence, we will consider two different models for the
form factors. We start by considering a model by Neu-
bert and Stech (NS) [4] which is a parametrisation based
on simple assumptions, in reasonable agreement with the
available data and with most theoretical predictions. In
the case of heavy-to-light transitions, the form factors no
longer obey the symmetry relations valid in the heavy-to-
heavy decays. One can account for this by introducing,
for each form factor, a function ξi(w) replacing the Isgur–
Wise function:

F1(q2) =
mB +mM

2
√
mBmM

ξ1(w), (10)

F0(q2) =
2
√
mBmM

mB +mM

w + 1
2

ξ0(w), (11)

where

w = vB · vM =
m2

B +m2
M − q2

2mBmM
. (12)

The maximum value of w = wmax is obtained at q2 = 0.
For an estimate of the functions ξi(w) a simple pole model
is used:

ξ1(w) =

√
2

w + 1
1

1 + r

wmax − w1

w − w1
, (13)

ξ0(w) =

√
2

w + 1
1

1 + r
w − 1

wmax − 1

(14)

Table 1. Values of the form factors used in the calculation.
These are used in slightly different formulas for computing the
amplitudes. The CQM form factors are indeed extracted using
a Goldstone-like coupling for the η particle and refer only to
the dd̄ component, while those of the NS model refer to the
uū + dd̄ (see Sect. 3). In order to compare the two models on
the same footing the form factors of the CQM model have to
be multiplied by 21/2

F B→η
0 (0) F B→η

0 (m2
D) F B→η

1 (m2
D∗)

CQM model 0.15 0.17 0.23
NS model 0.26 0.28 0.33

Table 2. Theoretical predictions and 90% C.L. upper limits
on branching ratios. The errors quoted for the CQM model
only refer to the variation of the parameters in the model and
not to the model dependence of the result

Decay mode @90% C.L. [1] NS model CQM model

B̄0 → D0π < 1.2×10−4 0.77 × 10−4 1.3+0.4
−0.3 × 10−4

B̄0 → D∗0π < 4.4×10−4 1.05 × 10−4 1.1 ± 0.3 × 10−4

B̄0 → D0η < 1.3×10−4 0.50 × 10−4 0.44 ± 0.02 × 10−4

B̄0 → D∗0η < 2.6×10−4 0.60 × 10−4 0.70 ± 0.04 × 10−4

B̄0 → D0η′ < 9.4×10−4 0.32 × 10−4 0.30 ± 0.02 × 10−4

B̄0 → D∗0η′ < 14×10−4 0.41 × 10−4 0.47 ± 0.04 × 10−4

where

r =
(mB −mV )2

4mBmV

(
1 +

4mBmV

M2
0 − (mB −mV )2

)
, (15)

where V is the vector meson in the same doublet as the
scalar meson involved in the decay described by the F0
form factor (for the η this corresponds to ω). Moreover

w1 =
m2

B +m2
M −M2

1

2mBmM
, (16)

whereMi is the mass of the nearest resonance with the ap-
propriate spin-parity quantum numbers (for M0 = MB∗∗
= 5.754GeV it is the 0+ pole and for M1 = MB∗ =
5.325GeV it is the 1− pole).

These form factors satisfy the relation

F1(0) = F0(0), (17)

and scale as ξi(w) ∼ w−3/2 for large w, in accordance with
the scaling rules obtained in [8].

The B → η form factors we obtain in this model
are given in Table 1. The results for the branching ratios
are given in Table 2. We also compute the corresponding
B → π decays in order to allow a comparison to be made
with experimental data and theoretical predictions that is
independent of the assumptions concerning the η mixing.

3 CQM model

The computation of the form factor F0 and F1 can be
carried out with the aid of a constituent quark model
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(CQM) [9]. This model has shown to be particularly suit-
able for the study of heavy meson decays. Since its La-
grangian describes Feynman rules for the vertices (heavy
meson)–(heavy quark)–(light quark) [10], transition am-
plitudes are computable via simple constituent quark loop
diagrams in which mesons appear as external legs. We de-
termine FB→η8

0 considering the η8 as a Goldstone boson.
Therefore one has to take into account the relations be-
tween η8 and ηq for the process under study. To begin we
observe that

qµ〈η8|V µ|B̄0〉 = (m2
B −m2

η)F
(B→η8)
0 , (18)

where qµ is the momentum carried by the current V µ. For
our purposes η is essentially the Goldstone octet compo-
nent η8:

〈η|V µ|B̄0〉 � 〈η8|V µ|B̄0〉. (19)

On the other hand the amplitude related to the process
in Fig. 1 is

〈η|V µ|B̄0〉 = cosφ〈ηq|V µ|B̄0〉, (20)

if we also take into account a small mixing angle, θ8 in the
notation of [3], we write

〈η8|V µ|B̄0〉 = cosφ
cos θ8

〈ηq|V µ|B̄0〉. (21)

Again we stress that here we are neglecting the singlet
component and we assume that the B → η matrix ele-
ment which enters in the factorization diagram is the one
containing only the dd̄ components. In other words we can
write

qµ〈η8|V µ|B̄0〉 = cosφ
cos θ8

(m2
B −m2

ηq
)F (B→ηq)

0 , (22)

in such a way that

F
(B→ηq)
0 =

cos θ8
cosφ

(m2
B −m2

η)
(m2

B −m2
ηq
)
F

(B→η8)
0 . (23)

Notice that θ8 is determined in [3] to be θ8 = −21.0◦. For
the F1 form factor we obtain

F
(B→ηq)
1 (m2

D∗) =
ε · (p+ qη8)
ε · (p+ qηq )

cos θ8
cosφ

F
(B→η8)
1 (m2

D∗).

(24)
We compute the η particle via its η8 component with a

Goldstone-like coupling in the meson-quark loop computa-
tion. The interaction Lagrangian generating this coupling
has the form

ψ̄aγ · Aabγ5ψb, (25)

where the indices a, b are the u, d, s quark indices, ψ being
a triplet of flavour-SU3. The structure of the A matrix is

Aµ = − i
2
(ξ∂µξ

† − ξ†∂µξ), (26)

a b

c

Fig. 2a–c. CQM diagrams. The heavy line represents the
incoming heavy meson. The double line is the heavy quark,
the curly line represents the current insertion. a is the non-
derivative diagram in which the η is coupled at the same vertex
as the current, b is the direct diagram and c is the polar dia-
gram: an intermediate heavy meson state is taken into account

and ξ = eiπ/f . The π matrix has the well-known form

π =




π0
√
2
+

η8√
6

π+ K+

π− − π0
√
2
+

η8√
6

K0

K− K0 − 2√
6
η8


 . (27)

When the dd̄ component is taken into account the Feyn-
man rule for the vertex is qµγµγ5/(61/2fπ). We isolate
three contributions to the F0,1 form factors: a non-
derivative contribution, a direct and a polar contribution
[11]; see Fig. 2. The direct and the non-derivative contribu-
tions are represented in the CQM model by loop diagrams
in which the internal lines are heavy quark and light quark
propagators, while the external legs contain the incoming
meson and the vector current. In the non-derivative di-
agram the η external leg is attached at the same vertex
(heavy quark)–(light quark)–(current) due to the struc-
ture of the CQM interaction Lagrangian. In the direct di-
agram the η is instead attached to the light quark internal
line (see [11]). The polar diagram allows for an intermedi-
ate polar state separating the current insertion from the
loop diagram. Each of these diagrams contributes to the
form factors F0,1 in a calculable way. Summing up these
contributions and imposing the condition F1(0) = F0(0),
which eliminates the spurious singularity in the form fac-
tor decomposition, one obtains

Fi(q2) = αj(q2)(F nd
i + F dir

i (q2) + F pol
i (q2)), (28)

where i = 0, 1. The functions αj(q2), j = 0, 1 are needed
to impose the condition F1(0) = F0(0). This is because the
sum in parentheses reproduces the form factor on the l.h.s.
of the previous equation only at q2

max, i.e., α(q
2
max) � 1.

Following [11] we choose

αj(q2) = 1 + αj

q2 −m2
B −m2

η

2mBΛχ
= 1 − αjEη/Λχ, (29)

where Λχ = 1GeV. In such a way we enforce that α(q2
max)

� 1. Eη is the η energy in the B rest frame. We borrow α0
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from [11] where we had α0 = 0.27. The form factor used
in the computation of the branching ratios are of course
those given in (28). The non-derivative (nd) contributions
to the form factors are given by

F nd
0 =

fB√
6fπ

, F nd
1 =

fB

2
√
6fπ

. (30)

The direct contributions are

FDir
1 (q2) =

S1 + S2

2
, (31)

FDir
0 (q2) =

S1 − S2 +A(q2)(S1 + S2)
2A(q2)

, (32)

where

A(q2) =
(m2

B −m2
η)

q2 ,

and

S1 =
2√
6fπ

√
ZHmH

(
mm2

η

mH
Z +

(
2m
mH

v · qη − m2
η

mH

)
Ω1

− 2v · qη

mH
Ω4 − 2mη

mH
Ω6

)
,

S2 =
2√
6fπ

√
ZHmH

(
m2Z − 2mΩ1

− mηΩ2 + 2Ω3 +Ω4 −Ω5

)
.

In these expressions we have

v · qη =
m2

B +m2
η − q2

2mH
. (33)

The symbols Z,ZH , Ωi indicate integral expression listed
in [10]. These are functions of ∆H , the difference between
the heavy meson and the heavy quark constituent mass
mH − mQ, ∆ = ∆H − v · qη and v · qη, v being the four
velocity of the B meson. qµ is the momentum carried by
the current insertion in the CQM loop diagram, m is the
constituent light quark mass, m = 300MeV. The suffix
H is referred to the H = (0−, 1−) multiplet predicted by
heavy quark effective theory.

The polar contributions are

F pol
1 (q2) =

F̂ g√
6fπ

√
mB

1
1 − q2/m2

B∗
, (34)

F pol
0 (q2) =

1
m2

B −m2
η

(
hmη

√
mBF̂

+
√
6fπ

)
1

1 − q2/m2
B∗∗

,

(35)

where B∗∗ is the 0+ state of the multiplet S = (0+, 1+),
while B∗ is the 1− state of the H multiplet. h is the cou-
pling constant HSπ and in CQM one finds h = −0.76 ±
0.13 while g = 0.46±0.04, from HHπ. We use the central
values for all these constants and the value∆H = 0.4GeV.

Variations of ∆H in the range 0.3–0.5GeV induce few %
variations in the form factors (see Table 2). F̂ and F̂+

are defined as the decay constants of the H and S heavy
mesons respectively.

Note that the form factors calculated in this section
already include the factor taking into account that the
process we are considering only involves the dd̄ compo-
nent of η through the numerical coefficient of the Feyn-
man rule. Therefore when combining (7) and (23) one has
to be careful to remove a factor 1/(21/2) from (7):

GB̄0D0η =
GF√
2
VcbV

∗
uda2fDF

(B→η8)
0 (m2

D)(m2
B −m2

η) cos θ8

(36)
in terms of the η8 state. From (24) and (9) we get in a
similar way

GB̄0D∗0η =
GF√
2
VcbV

∗
uda2fD∗mD∗

× F
(B→η8)
1 (m2

D∗)ε · (p+ qη) cos θ8. (37)

Numerical results are given in Table 1 and 2. The two mod-
els give similar results for the form factors and branching
ratios. The amount of model dependence due to the form
factors is difficult to quantify. By comparing the two mod-
els one can conclude that they affect the branching ratios
at the level of ∼ ±0.1 × 10−4. The a2 coefficient is con-
sidered fixed at the value 0.29 in the calculation. As it
enters as a2

2 in the branching ratio, changing its value
to 0.25 may add to the error on the branching ratio up
to ∼ ±0.2 × 10−4. However if the quark picture used in
the calculation is correct, such a large variation is not ex-
pected as B̄0 → D0η is in this case to be treated on the
same footing as B̄0 → D0π.

4 Conclusion

In order to test the idea of relating the η and η′ using
the quark-flavour basis in the decays considered in this
work, experimental data will have to measure the ratio
of Br’s η′/η. If different from what estimated, this prob-
ably means that the quark mechanism (see Fig. 1) is not
sufficient to explain the decays into η′. This would sug-
gest we should look at some other mechanism, like the
gluon anomaly explored in [12] where the large observed
production of η′ in B → Xsη

′ decays has been studied.
The mechanism suggested there is based on the subpro-
cess b → sg∗ → sη′g where the virtual gluon emerging
from the standard model penguin couples to η′ via a gluon
anomaly vertex g∗gη′. The possibility that the other gluon
g is emitted by the light quark inside a B meson has been
examined in [13]. The B → Kη′ decay has been recently
examined in the context of perturbative QCD in [14]. In
the case of B → Dη′ studied here it is more difficult to
imagine some gluonic mechanism of the kind described
before. Anyway we cannot exclude this possibility since
the η′ can have a large glue component [13]; see also [15].
Under the assumptions considered in this work B̄0 → D0η
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is similar to B̄0 → D0π. The calculation is related to the
one for B̄0 → D0η′ using the quark-flavour basis. We have
checked that two different ways of computing the form fac-
tors give similar results.
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Physique Nucléaire de Lyon (IPN Lyon) is UMR 5822.

References

1. B. Nemati et al. [CLEO Collaboration], Phys. Rev. D 57,
5363 (1998) [hep-ex/9708033]; D.E. Groom et al. [Particle
Data Group Collaboration], Eur. Phys. J. C 15, 1 (2000)

2. B. Aubert et al. [BABAR Collaboration], hep-ex/0109034
3. T. Feldmann, P. Kroll, B. Stech, Phys. Rev. D 58, 114006

(1998) [hep-ph/9802409]; T. Feldmann, P. Kroll, B. Stech,
Phys. Lett. B 449, 339 (1999) [hep-ph/9812269]

4. M. Neubert, B. Stech, Non-leptonic weak decays of B
mesons, in Heavy flavours II, 294–344, edited by A.J.
Buras, M. Lindner (World Scientific, Singapore) [hep-
ph/9705292]

5. M. Bauer, B. Stech, Phys. Lett. B 152, 380 (1985); M.
Bauer, B. Stech, M. Wirbel, Z. Phys. C 34, 103 (1987); A.
Deandrea, N. Di Bartolomeo, R. Gatto, G. Nardulli, Phys.
Lett. B 318, 549 (1993) [hep-ph/9308210]

6. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999) [hep-ph/9905312]; M.
Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl.
Phys. B 591, 313 (2000) [hep-ph/0006124]

7. M. Neubert, TASI 2000: Flavor Physics for the Millen-
nium, Boulder, Colorado, 4–30 June 2000, hep-ph/0012204

8. A. Ali, V.M. Braun, H. Simma, Z. Phys. C 63, 437 (1994)
[hep-ph/9401277]

9. D. Ebert, T. Feldmann, R. Friedrich, H. Reinhardt, Nucl.
Phys. B 434, 619 (1995) [hep-ph/9406220]; D. Ebert, T.
Feldmann, H. Reinhardt, Phys. Lett. B 388, 154 (1996)
[hep-ph/9608223]; A. Deandrea, N. Di Bartolomeo, R.
Gatto, G. Nardulli, A.D. Polosa, Phys. Rev. D 58, 034004
(1998) [hep-ph/9802308]

10. For a review on the CQM model see A.D. Polosa, Riv.
Nuovo Cim. N 23, 1 (2000) [hep-ph/0004183]

11. A. Deandrea, R. Gatto, G. Nardulli, A.D. Polosa, Phys.
Rev. D 61, 017502 (2000) [hep-ph/9907225]

12. D. Atwood, A. Soni, Phys. Lett. B 405, 150 (1997) [hep-
ph/9704357]; W.S. Hou, B. Tseng, Phys. Rev. Lett. 80,
434 (1998) [hep-ph/9705304]; A.L. Kagan, A.A. Petrov,
hep-ph/9707354; A.A. Petrov, Phys. Rev. D 58, 054004
(1998) [hep-ph/9712497]

13. M.R. Ahmady, E. Kou, A. Sugamoto, Phys. Rev. D 58,
014015 (1998) [hep-ph/9710509]

14. E. Kou, A.I. Sanda, hep-ph/0106159
15. J.O. Eeg, A. Hiorth, A.D. Polosa, hep-ph/0109201
16. H.Y. Cheng, hep-ph/0108096
17. K. Abe et al. [Belle Collaboration], hep-ex/0107048

Note added in proof: Very recently there was a phe-
nomenological determination of the a2 coefficient [16]
based on new data from Belle [17]. This seems to be in
contrast with all previous determinations based on the
factorization approach [6] addressing the problem of final-
state interaction in the B → Dπ channel. Such a problem
could arise also in this analysis where the B → Dη is con-
sidered as the starting point, and the factorization value
for a2 is assumed. We will consider this aspect in future
work.


